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Classical Irreversibility and Mapping of the 
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Mapping of the two-dimensional isosceles triangle billiard onto the circular one- 
dimensional motion of two mass points is described. The singular nature of 
trajectories directly incident on an acute vertex is discussed in the framework of 
the present mapping. For an obtuse-angled isosceles triangle, dynamical equations 
in two-particle space applied to an orbit along a hypotenuse incident on the obtuse 
vertex suggests irreversible behavior at the critical angle d: = 21r/3. Thus it is 
found that the nonsingular motion of a finite smooth-walled disk on this trajectory 
exhibits irreversibility. A finite spherical smooth-walled particle moving in a 
uniform right cylinder whose cross section includes this critical vertex angle 
likewise exhibits irreversibility. Each such example comprises an irreversible 
orbit for a single-particle Hamiltonian. 

1. I N T R O D U C T I O N  

A mapp ing  o f  the isosceles t r iangular  billiard onto the mot ion  of  two 
impenet rab le  mass  points  mov ing  on a circle with particle d i sp lacement  equal  
to respect ive  arc lengths is described.  The  related one-d imens iona l  mot ion  
cor responds  to respect ive  angular  d isp lacements  o f  the two particles.  This  
m a p p i n g  is one- to-one  save for  the set o f  points compr i s ing  the bisect ing 
line o f  the triangle. However ,  any two-par t ic le  state in one-d imens iona l  circu- 
lar space  maps  onto only one state in the corresponding tr iangular  billiard 
domain .  The  mapp ing  is a general izat ion o f  Sinai ' s  map  (Sinai, 1976; Cornfe ld  
et  al., 1982; Ka tok  and Strelcyn, 1986) o f  the r ight- t r iangular  billiard. In 
accord  with the Sinai map,  the two equal  legs o f  the isosceles triangle are 
each  labeled a hypotenuse.  It is noted that  a trajectory a long a hypotenuse  
in coll is ion with the obtuse ver tex at the critical angle ~b = 2'rr/3 consti tutes 
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an irreversible, but singular orbit (Liboff, 1987, 1990a,b; Reichl, 1990). It is 
shown that the nonsingular corresponding motion of a finite smooth-walled 
disk is irreversible and that the singular point-particle irreversible trajectory 
follows in the limit as the radius of the disk reduces to a point. Each such 
sequential trajectory is a solution to dynamical equations for a Hamiltonian 
and is an irreversible orbit. This irreversibility is found likewise to apply to 
a smooth-walled finite spherical particle moving in a uniform right cylinder 
whose cross section includes the critical vertex angle. For both these latter 
examples, reflection at the vertex occurs from a wall, not from the vertex as 
is the case for a point particle. Apart from abstract mathematical modeling 
(Hasegawa and Driebe, 1992, 1993), no previous study has demonstrated 
irreversibility of a physical system with few degrees of freedom. 

The singular nature of trajectories directly incident on an acute vertex 
is discussed in the framework of the present mapping. Three sets of such 
direct vertex scatterings are introduced, of varying degrees of singularity. 
Working in the representation of the present mapping, it is found that such 
orbits retroreflect. 

2. BILLIARD CONFIGURATION 

The billiard configuration we wish to consider is that of an isosceles 
triangle oriented as shown in Fig. 1, in Cartesian y space, with the base of 
the triangle aligned with the y~ = 0 line. At any instant of time the billiard 
particle has Cartesian components (Yl, Y2)- The billiard's motion is mapped 

Y2 

W 

Fig. 1. Isosceles triangular billiard configuration with defined hypotenuse vectors DI and 
D2 and the nonhypotenuse leg w. 
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onto the one-dimensional motion of  two particles of dimensionless masses 
(ml, m2) and respective displacements (xl, x2) through 

Yl : , f~lXl 

Y2 : ~ 2 X 2  ( la)  

where 

0--<x~<-- 1, 0-----x2--<2 ( lb)  

As illustrated in Fig. 1, the triangle includes two "hypotenuses" 
defined by 

D2 = (4t-m1, ,,/m2) (2a) 

Dl = ( - , f m t ,  , /m2) (2b) 

The angle between the Yl = 0 leg and either hypotenuse is 0 = tan - l  
(mllm2) 1r2. Conservation of energy of  the particle in collision with either 
hypotenuse is given by the relations 

E = m I ~t + m2~2 = ~l + 3 ~2 = 3)2 - 3),2 (3a) 

Conservation of  momentum in the direction of  a hypotenuse is given by 

# - D  = ~,'- D (3b) 

where D is written for D I o r  D 2. In the preceding relation, E is a constant 
of the mapping, primed values denote after collision, and a dot denotes 
time differentiation. 

To incorporate the condition ( lb)  into the present mapping, the rn I and 
m2 particles are constrained to move on a circle with respective arc-length 
displacements (xt, x2). One point on the circle, labeled W (Fig. 2), corresponds 

W e o W 2 

Co) 
Fig. 2. Domains of xt and xv These coordinates represent arc lengths. The arrows drawn 
to x~, x2 from the origin are for clarity. The reflecting wall W at x, = x2 = 0 is shown. 
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to the impenetrable nonhypotenuse leg at Yt = 0, labeled w (Fig. 1). In the 
upper-half circular Bx domain 

O - < x l - - x 2 - -  1 (4a) 

while in the lower-half circular Ax domain 

0<x~- -<  1, 1 - < x 2 < - 2  (4b) 

(Fig. 3). Thus, in each domain of  the circle, x2 -< x2 (corresponding to ml 
-< m2, and 0 -< qr/4 in y space). In both halves of the circle, reflection of.el 
from the point W in x space corresponds to reflection from w in y space. In 
each such collision in x space (with Xl < x2) ~tl reverses and :r maintains 
(at the instant of the -r reversal). Reflection from a hypotenuse in y space 
corresponds to collision of particles in x space at a point on the circular 
domain away from the W point. 

This mapping is one-to-one, except for states on the line Y2 = , ~ 2 ,  for 
which y states may be said to be twofold degenerate. That is, any point on 
this line maps onto two points in x space which are mirror images about the 
diameter through the point x2 = 1. Thus, in the mapping to x space of  the 
periodic motion along Y2 = x~2,  symmetric trajectories of  these mirror- 
image particles begin at W, simultaneously collide with the stationary m2 
particle at x2 = I, and symmetrically reflect back to W. 

Whereas our generalized Sinai mapping from y to x space is not one- 
to-one, the reverse mapping is one-to-one. That is, any point in x space maps 
onto only one point in y space, so that the dynamics of the two-particle 
motion in x space uniquely maps onto the corresponding billiard motion in 
y space. 

y-space x-space 
(a) (b) 

Fig. 3. (a) Triangle y space. (b) Circle x space. 

Bx 

Ax 
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3. DYNAMICAL EQUATIONS AND TRAJECTORIES 

3.1. Crossover  Rules  

Let Ay and By, respectively, represent the upper and lower right-triangular 
halves of the isosceles domain in y space (Fig. 3). As described above, states 
and trajectories in the domains A~ and Bx map uniquely onto corresponding 
states and trajectories in the Ay and By domains. Trajectories in these two 
domains of the two point-masses (ms, m2) with respective coordinates (xt, 
x2) are determined by the one-dimensional dynamical equations 

ml - m2 2m2 
+-ff 2 

m2 - ml 2ml 
- - - - - -g - -  + (5) 

where M = ml + m2 and primed variables represent values after collision. 
Dynamics through the point x2 = 1 (corresponding to motion through the 
bisecting line of the triangle in y space) is given by the following rules: 
Consider trajectories which cross from the Bx domain to the Ax domain 
through this point. At the value x2 = 1-, Xl reflects through the diameter 
(which includes the point x2 = 1) to the Ax domain, with continuous motion 
maintained. For example, if xl > 0, then this value is maintained through 
the crossover. Similarly, for a trajectory in Ax, at the value x2 = 1 § Xl reflects 
to the image point in the Bx domain with continuous motion maintained. The 
event which follows a crossover of xb for ~r > 0, corresponds in y space to 
reflection from the respective DI or 02 hypotenuse subsequent to which there 
is a collision with w. Note that continuous motion, both in x and y space, is 
maintained through the crossover event. 

In applying the dynamical equations (5) in the domain A~ or the momen- 
tum conservation equation (2b), (3b) in this domain, the following important 
rule should be noted: as the sign of increase of xl is opposite to that of x2 
in Ax, for consistency of application of these dynamical equations in this 
domain, the signs in front of -~1 and .~ are reversed. Thus, for example, with 
the transformation equations (la), (2b), (3b), relevant to domain Ax, one 
obtains conservation of momentum with the noted sign changes. Motion 
along either hypotenuse in y space corresponds to coincident motion of x~ 
and x2 in x space. For motion on D1, sign-change rules apply and one obtains 
-~1 = --~2, which with (1 a) returns the correct corresponding relation in y space. 

Here is an additional simple application of rules of the preceding mapping 
which demonstrates their consistency. Consider the equilateral triangle billiard 
for which ml = 3/4, m2 = 1/4. Let us examine the initial velocities -~l = 0 
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and R2 = - a ,  which correspond in y space to the particle vertically incident 
on D2. Equations (5) give the reflected velocities 

., a a x / ~  = _ _  = 

xn 2 

., a a 
x2 = ~ ~ ) ~  = ~ (6) 

The slope of the reflected orbit in y space is - l/v/3 corresponding to linear 
motion parallel to 1)1. Repeating this calculation for vertical incidence on DI 
gives reflection parallel to D2. Reversing the first orbit and combining with 
the second orbit gives a net "juxtareflected" trajectory (i.e., switching of 
incident motion parallel to DI to reflected motion parallel to D2). Such motion 
maintains as the first point of reflection approaches the vertex and we may 
conclude that juxtareflection is consistent for a particle incident on a leg of 
a vertex of angle "tr/3. In each such event the particle experiences two bounces. 

Retroreflection or juxtareflection from an acute-angled vertex for inci- 
dent motion parallel to a leg of  the vertex occurs for vertex angles a'r/n, where 
n >- 2 is an integer. This may be seen through mapping the orbit onto a 
straight line in the plane (comprised of 2n congruent wedges with a common 
vertex at the origin) (Koslov, 1991; Kerckhoff et  al., 1986). 

3.2. Acute Vertex Scattering 

Vertex reflections discussed above are multibounce events. In the limit 
that the first bounce of such an event approaches the vertex, the bounce 
number of the reflection maintains. Direct incidence of a trajectory on a 
vertex, is a single-bounce scattering and is singular event (Koslov, .1991). 
This singular property is well illustrated in x space. Thus, any collision on 
the acute vertex, say, at (0, 0) in y space, corresponds to xz and x2 simultane- 
ously incident on W. Any deviation of simultaneous collision of x~ and x2 
with W, no matter how small, corresponds to multi-wall reflections in y space. 

Within the framework of the present mapping, it is possible to discuss 
properties of such singular direct-vertex scatterings. Thus, for scattering from 
either acute vertex (0 --< ~r/4), we note the following: As noted above, any 
trajectory incident on, say, the acute vertex at (0, 0) in y space corresponds 
in x space to Xl and x2 simultaneously incident on W from which both particles 
reflect with individually reversed speeds. It follows that a point particle 
directly incident on either acute vertex retroreflects. Two examples of this 
rule are as follows. Consider the trajectory in y space Yl = 0, Y2 > 0, )2 < 
0 corresponding to motion along the Yl = 0 leg toward (0, 0). In the corres- 
ponding situation in x space, Jr2 reverses in collision with W and Xl remains 
at W. In the related situation in y space, the particle retroreflects. Next consider 
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the trajectory in y space along D2 toward (0, 0). In x space the two particles 
are coincident. At W the coincident particles simultaneously reflect and again 
the particle in y space retroreflects. For the subset of angles 0 = ~rln, where 
again n >- 2 is an integer, this result may be established as described above 
through mapping the orbit onto a straight line in the plane. Retroreflection 
for direct vertex scattering follows in the limit that the trajectory line passes 
through the origin. Any variation of the straight line from the origin, no 
matter how small, results in a multibounce scattering, again revealing the 
singular nature of these events. 

Retroreflection of direct vertex scattering, when viewed in x - t  space, 
with xl(t) and x2(t) superimposed, illustrates the dynamic reversibility of these 
orbits (Fig. 4). 

3.3. I and L Scattering Events 

We introduce the following sets of vertex scattering events. In I scatter- 
ings, the incident trajectory lies in the open domain of the triangle. As noted 
above, except for a subset of measure zero, all scatterings in the I set are 
singular. In Ib scatterings, the incident trajectory bisects the vertex. From 
symmetry, the particle retroreflects. Replacing the point particle by a disk of 
finite radius likewise gives retroreflection. In the limit that the radius of the 
disk shrinks to a point this property maintains. Thus, we classify Ib scattering 
as quasisingular, as it is still the case that any variation of the trajectory away 
from the vertex, no matter how small, destroys the retroreflection. In L 
scattering, the incident trajectory is along a leg of the vertex. As the incident 
particle is so constrained, such scattering events are nonsingular. For direct 
vertex incidence on an acute vertex, L scattering results in retroreflection. 

gt 

Fig. 4. Direct vertex scattering in x - t  s ~ace from the W point (labeled 0) illustrating dynamic 
reversibility of the retroreflected orbit m y space. The parameter c is a characteristic speed. 
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This is shown as follows. Consider a smooth-walled disk of finite radius on 
D2 which moves toward the vertex with w. At the vertex the impact force 
on the disk is normal to w and passes through the center of the disk. Due 
to the constraint of the D2 wall, the disk retroreflects in response to the 
component of force parallel to D2. This construction maintains as the radius 
of the disk shrinks to a point. 

3.4. Obtuse-Vertex Scattering 

We concentrate on L scattering in which the particle in y space is directed 
toward the obtuse vertex (ml --< m2) along a hypotenuse leg of the triangle. 
For this case, a trajectory on D2 toward the obtuse vertex specularly reflects 
at the vertex from DI. This conclusion follows as in the limiting cases 
considered above. Thus, again consider that a finite, smooth-walled disk on 
D2 moves toward the obtuse vertex with D1. In this case, the D2 wall merely 
guides the disk to its collision with Dl at which point the impact force on 
the disk is due entirely to DI. This conclusion remains valid as the radius of 
the disk shrinks to a point. 

Depending on whether ~ < 2~r/3 or ~ > 2-tr/3, the particle then enters 
the By or Ay domain, respectively. To examine this situation in x space we 
set x2 = xl + ~ and let e ---> 0. The critical angle ~ = 2"tr/3 follows from 
applying (5) with the sign-change rules stated above. We obtain 

.t~ = (ml - 3m2~ 

~ = (m 2 - 3m1~ (7) 

A particular solution of these relations is employed below in the descrip- 
tion of an irreversible orbit. 

4. IRREVERSIBLE ORBITS 

4.1. Point Particle 

For the configuration considered immediately above, the initial trajectory 
on D2 toward the obtuse vertex corresponds to values Jt~ = -~2 > 0. The 
critical mass ratio implied by (7) is ml/m2 = 1/3. With this property and the 
given initial conditions, (7) yields the values ~ = 0, ,~ < 0, which correspond 
in y space to reflection from Dt onto the symmetry line separating Ay and 
B r The resulting periodic orbit is an Ib trajectory, as it bisects the obtuse 
vertex and reflects normally from w. As noted above, Ib trajectories may be 
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considered to be quasisingular. Reversing this orbit at any instant never 
recaptures the reverse of the starting trajectory on the hypotenuse, and we 
may conclude that this quasisingular trajectory is irreversible (Liboff, 1987, 
1990a,b; Reichl, 1990). 

4.2. Finite Disk and Finite Sphere 

The nonsingular motion of a smooth-walled disk of finite radius, starting 
with the same initial conditions as described immediately above, experiences 
the same irreversibility. In this case reflection is from the D~ wall at a finite 
displacement from the vertex. The singular irreversible trajectory of a point 
particle occurs in the limit that the radius of the disk shrinks to a point. 2 

This irreversibility applies equally to a finite, smooth-walled spherical 
particle moving within a uniform fight, smooth-walled cylinder whose cross 
section includes a vertex of critical angle, 2"tr/3. The radius of the particle 
is small compared to the mean diameter of the cylinder. Consider a trajectory 
along a side of the cylinder in the vicinity of the critical vertex which moves 
toward the vertex. The component of this motion in a cross-sectional plane 
of the cylinder reveals the irreversibility of the orbit. For either the two- 
dimensional finite-disk motion or the three-dimensional finite-sphere motion, 
the Hamiltonian of the system occurs with time-invariant boundary conditions. 

5. CONCLUSIONS 

A mapping is described in which the isosceles triangle billiard is mapped 
onto the motion of two mass points moving on a circular one-dimensional 
curve, with particle displacements given by respective arc lengths along the 
circle. The singular nature of trajectories directly incident on an acute vertex 
is discussed in the framework of the present mapping. Working in this repre- 
sentation, it is found that these orbits retroreflect. A trajectory classification 
scheme is introduced related to such direct vertex scatterings. For an obtuse- 
angled isosceles triangle, dynamical equations in two-particle x-space applied 
to an orbit in triangle space along a hypotenuse incident on the obtuse vertex 
imply a separation of reflected orbits at the critical obtuse angle ~ = 2~r/3. 
At this critical angle it is noted that the related singular orbit is irreversible. 
It is shown that the nonsingular motion of a finite smooth-walled disk likewise 
exhibits this irreversibility. The point-particle singular irreversible trajectory 
follows in the limit as the radius of the disk reduces to a point. Each such 
sequential trajectory is a solution to dynamical equations and is an irreversible 

2 In L scattering the vertex angle ~J = 2xr/3 is the only angle for which the reversed orbit is 
affected by both legs of the vertex. For all other vertex angles in the interval ~/2 --< ~ < It, 
the reversed orbit is affected only by the original reflecting leg. 
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orbit. This irreversibility applies also to the nonsingular motion of a finite 
spherical particle moving in a uniform right cylinder whose cross section 
includes a critical vertex angle. 
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